Karl Weissenberg was born in Vienna, Austria, in 1893. He studied at the Universities of Vienna, Berlin and Jena, majoring in mathematics, but also attending lectures in physics and chemistry as well as law and medicine. At the age of 23, he obtained a PhD in Mathematics from the University of Jena.

His teaching and research activities covered an unusually wide range of disciplines. Weissenberg published over 70 original papers on the most varied of subjects, including, in Mathematics, the analysis of symmetry groups as well as tensor and matrix algebra, and, in Medicine, on new methods for the measurement of blood-circulation and the application of X-rays in cancer treatment. His contributions to Crystallography, in particular, were of the greatest significance. His main contributions were in X-ray Crystallography and in Rheology. In 1922, he joined the Kaiser-Wilhelm Institut für Faserstoffchemie in Berlin and developed methods for the determination of the constitution and crystallographic structure of solids of all kinds. His work culminated in the design of the “Weissenberg X-ray Goniometer”, an instrument which allowed for the first time an unequivocal determination of the crystallographic structure in three-dimensional space. As Weissenberg liked to explain in his later years, his dedicated interest in combining theory and experiment goes back to advice from Albert Einstein: When Weissenberg came to Berlin in 1922, he went to see Einstein to ask for guidance on his scientific career. Einstein, who, as Weissenberg reported, was preoccupied at the time of their meeting with other business, replied briefly “Bauen Sie Instrumente! (You should build instruments!)”, an advise taken up well by Weissenberg!

Parallel to his interests in crystallography, Weissenberg developed an interest in the new field of Rheology. He predicted various effects, which were at the time paradoxical, on the flow of fluids and he verified them experimentally. Best known is the so-called “Weissenberg Effect”: Visco-elastic materials subjected to torsional movements by a rotating rod develop normal forces which make them climb up on the rod. Using dimensional analysis, he introduced a dimensionless number representing the ratio of elastic to viscous effects, which later became known as the “Weissenberg number”. In 1933, Weissenberg became a refugee and took up residence in the UK, where he concentrated on his rheological interests. He designed a new type of measuring instrument, known as the “Weissenberg Rheogoniometer”, which allowed for the first time the measurement of the development of material stresses during shear flow in all three directions of space. He worked for government and industrial research institutions in Britain and the United States.

Karl Weissenberg had the reputation of being an entirely engaging and unselfish person, of being a delightful companion, and ever helpful friend and also an excellent tennis player. He retired in The Netherlands. An obituary, written at the time of his death in 1976, concluded that “he was notable in his scientific achievements and noble in his personal qualities.”
WEISSENBERG AWARD

The WEISSENBERG award, given by the European Society of Rheology (ESR), is the highest award of the ESR. It is given every three years in recognition of outstanding contributions to the science of rheology. The award was first given in 1997 and is named after Karl Weissenberg, a pioneer in the field of rheology.

Michael Cates

Michael Cates studied physics at Cambridge University and later went on to hold a number of positions at major institutions worldwide. He is known for his landmark contributions in several key areas of rheology, including the study of colloidal glasses, and more recently the mechanics of active fluids. This area of research was virtually non-existent in rheology communities shape in large the field. Consider for example contributions on the study of arrested states (glasses and gels), viscoelasticity of smectic phases, rheo-chaos, jammed particles and glasses and gels. In addition, he has made seminal contributions on the study of glasses and gels, and soft glassy rheology based on the trap model.

Michael Cates has published over 280 papers, with more than 14,000 citations, and his work has set the stage for an unprecedented activity (experiments, simulations and theory) in the rich field of colloidal glasses and gels. In addition, Mike has made seminal contributions on the study of glasses and gels, and soft glassy rheology based on the trap model.

Ole Hassager

Ole Hassager is known for his contributions to the study of the rheology and mechanics of active fluids. He is also known for his work on the study of the rheology of complex fluids, including colloidal glasses and gels. His research has made strong links with experimentalists and challenged traditional ideas of soft glassy rheology based on the trap model. Mike is known for his landmark contributions in several key areas of rheology, including the study of colloidal glasses, and more recently the mechanics of active fluids. This area of research was virtually non-existent in rheology communities shape in large the field. Consider for example contributions on the study of arrested states (glasses and gels), viscoelasticity of smectic phases, rheo-chaos, jammed particles and glasses and gels. In addition, Mike has made seminal contributions on the study of glasses and gels, and soft glassy rheology based on the trap model.

JANEZ PIRNAT

JANEZ PIRNAT

JANEZ PIRNAT was born in Škofja Loka in 1942. He started his studies with a thesis on the »Slovene Impressionism in the Work of Ivan Tavčar«. After graduation he went to Italy and continued his studies at the Accademia di belle arti di Firenze, Italy. He finished his studies with a thesis on the »Sculpture of the 19th century in Tuscany«. Despite this, he returned to Slovenia and became a member of the Ljubljana Academy of arts and culture in 1978, and was elected a member of the Academy of Sciences and Arts of Slovenia in 2007.

He lives and works in Ljubljana and at Sipar in Istria (Savudrija). He has received numerous awards, including the Award of the Insurrection of the Slovene People for Sculpture and in 1984 the Book Fair for illustrations of the poems by Li Tai Po. In 1979, he received the International Art Competition »Senj« in Yugoslavia for sculpture. From 1979 to 1983 he participated in collective exhibitions in Italy and was a member of the travelling exhibition »Slovenian Art of the 20th century« between Zagreb and Luxembourg. Since then he has participated in numerous exhibitions and has received many awards.

In the beginning of the 1970s he settled in Paris, where he organized a special exhibition for a sculptor and a group of catastrophic Croatian artists. In 1984 he was elected a member of the Academy of Arts of Slovenia, and in 1990 a member of the Academy of Sciences and Arts of Slovenia. He was also a member of the Academy of Sciences and Arts of Yugoslavia. He has been awarded the Order of Merit of the Republic of Slovenia and the Order of Merit of the Republic of Croatia. He has also been decorated by the City of Ljubljana and by the Czech Academy of Arts and Sciences. He was also awarded the Otto Brahm Award and the Society of Sculptors Award of the City of Ljubljana.